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Towards the total synthesis of clavosolide A
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Abstract—The synthesis of the monomeric unit of clavosolide A from 1,2:5,6-di-O-isopropylidene-a-DD-glucose is presented.
� 2006 Elsevier Ltd. All rights reserved.
Clavosolides A–D were isolated from the marine sponge
Myriastra Clavosa collected from Phillipines. Faulkner
et al. and Gustafson et al. independently investigated
the structures of these natural products and reported
an unusual structural framework associated with them.1

For instance, clavosolide A 1 is a symmetrical dimeric
16-membered cyclic macrolide and its monomeric unit
consists of a densely functionalized tetrahydropyran
ring glycosylated with permethylated DD-xylose and
substituted with a branched cyclopropyl residue. Due
to the structural novelty and limited availability, the
clavosolide class of compounds have become a source
of inspiration for chemists to devise a synthetic strategy
leading to a total synthesis. While we were at an ad-
vanced stage of our synthetic route towards clavosolide
A, the stereochemistry of the natural product came
under scrutiny from the groups of Willis2 and Lee.3 It is
pertinent to mention that the absolute stereochemical
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Scheme 1. Retrosynthetic analysis.
assignments of clavosolide A are 3S, 3 0S, 4R, 4 0R, 5S,
5 0S, 7S, 7 0S, 9S, 9 0S, 10R, 10 0R, 11R, 11 0R. We describe
herein the synthesis of the monomeric unit 2 of clavoso-
lide A possessing the initially reported stereochemistry.
Our retrosynthetic approach towards the seco acid 2
of clavosolide A 1 is outlined in Scheme 1.

1,2:5,6-Di-O-isopropylidene-a-DD-glucose 6 was con-
verted into the 3-deoxy derivative 7 by Barton–McCom-
bie deoxygenation of the 3-hydroxyl group followed by
selective acid hydrolysis of the 5,6-isopropylidene unit as
reported.4 Subsequent oxidative cleavage of the diol 7
followed by Wittig reaction with Ph3P@CHCH3 affor-
ded predominantly the cis-alkene derivative 8a as con-
firmed by the 1H NMR spectrum (cis:trans 9:1).
Alternatively, one-pot oxidative cleavage and Wittig–
Horner reaction of the diol 7 in the presence of NaIO4,
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aqueous media gave exclusively the trans ester 9.5 The
Corey–Chaykovsky cyclopropanation6 of 9 in the pres-
ence of trimethylsulfoxonium methylide provided an
easily separable diastereomeric mixture of 10a and 10b
(1:1).7 A single crystal X-ray crystallographic study of
10a8 established the stereochemistry of the cyclopropane
ring and indirectly also supported the assigned structure
of 10b (Scheme 2).

Although we were successful in transforming 10b into
the desired product 5 by reduction of the ester followed
by nucleophilic displacement with phenyl sulfide and
desulfurization,9 considering the poor selectivity in the
Chaykovsky cyclopropanation, we instead chose to syn-
thesise 8b from 9 and then to cyclopropanate using the
Simmons–Smith reaction. Reduction of the ester 9 using
DIBAL-H at �78 �C, chlorination of the resulting
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Scheme 2. Reagents and conditions: (a) Ref. 4; (b) (i) NaIO4 on silica, CH2C
(c) NaIO4, 5% aq NaHCO3, triethyl phosphonoacetate, 6 M K2CO3, H2O, 48
(e) 1 M DIBAL-H, toluene, �78 �C, 3 h, 93%; (f) PhSSPh, Bu3P, THF, "#
toluene, �78 �C, 3 h, 90%; (i) PPh3, CCl4, "#, 8 h, 78%; (j) LiAlH4, THF, 0 �C
89%.
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Scheme 3. Reagents and conditions: (a) (i) 0.4% aq H2SO4, 1,4-dioxane, 60
dimethoxypropane, CH2Cl2, rt, 0.5 h; (iv) BH3ÆDMS, THF, 0 �C, 3 N aq NaO
3 h; (ii) Ph3P@CH(CH3)COOEt, toluene, "#, 0.5 h, 66%; (c) 1 M DIBAL-H
toluene), CH2Cl2, �20 �C, 24 h, 88%; (e) (i) (COCl)2, DMSO, TEA, CH2Cl2,
Pd(PPh3)4, BH3:Me2NH, AcOH, CH2Cl2, rt, 0.5 h, 66%; (g) TBSCl, imida
material); (h) PPTS, MeOH, rt, 1 h, 21, 71%, 24, 84% (based on recovered sta
(k) LiOH, THF/MeOH/H2O, 10:1:1, rt, 18 h, 60%.
allylic alcohol 13 and dehalogenation of the chloride
14 using LiAlH4 afforded 8b (Jolefinic = 15.2 Hz). Cyclo-
propanation of 8b under Furukawa modified Simmons–
Smith cyclopropanation conditions10 using Et2Zn–
CH2I2 at �40 �C gave 511 in good yield (Scheme 2).

Next, compound 5 underwent a sequence of simple and
straightforward reactions including hydrolysis, one-car-
bon Wittig olefination, protection of the 1,3-diol and
hydroboration–oxidation to furnish the intermediate
15. Oxidation of 15 gave an aldehyde, which was imme-
diately reacted with PPh3@CH(CH3)CO2Et to afford the
corresponding (E)-a,b-unsaturated ester 16 whose
reduction with DIBAL-H gave the allylic alcohol 17.
Sharpless asymmetric epoxidation of olefin 17 using
(+)-DIPT as a chiral ligand at �20 �C gave the epoxy
alcohol 1812 as a single diastereomer. Subsequent oxida-
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�C, 1 h; (ii) CH3PPh3I, n-BuLi, THF, 0 �C, 1 h; (iii) PTSA (cat.), 2,2-
H, 30% H2O2, 2 h, 56%; (b) (i) Dess–Martin periodinane, CH2Cl2, rt,

, toluene, �78 �C, 4 h, 90%; (d) (+)-DIPT, Ti(OiPr)4, TBHP (3.3 M in
�78 �C, 1 h; (ii) Ph3P@CH2COOEt, CH2Cl2, rt, 1 h, 76%; (f) 5 mol %

zole, DMF, 0 �C, 1 h, 20, 81%, 3, 80% (based on recovered starting
rting material); (i) LiOH, THF, 48 h, 60%; (j) t-BuOK, THF, 0 �C, 8 h;
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tion and Wittig reaction with Ph3P@CH2CO2Et pro-
vided the key epoxy enoate 4. The palladium(0) medi-
ated regio- and stereoselective reduction13 of the vinyl
epoxide group in the presence of BH3:Me2NH–AcOH
and catalytic Pd(PPh3)4 transformed 4 into the corre-
sponding homoallylic alcohol 19.14 The corresponding
TBS-ether derivative 20 was subjected to acetonide
deprotection to give the diol 21 and the difference in
reactivity of the two hydroxyl groups was exploited to
protect selectively the cyclopropyl alcohol giving rise
to the bis-TBS-ether derivative 3. Intramolecular
Michael addition was carried out in the presence of
catalytic LiOH in THF to convert 3 into the
tetrahydropyran derivatives 22 and 23 as a separable
5:2 diastereomeric mixture. The major isomer 22 was
transformed into 23 by repeated treatment with t-BuOK
(Scheme 3).

The structure of the requisite diastereomer 23 was estab-
lished based on the NOE interactions of the tetrahydro-
pyran ring protons. Treatment of 23 with catalytic PPTS
in MeOH selectively removed one TBS group and pro-
vided 24.15 Finally, hydrolysis of the ester group of 24
with LiOH in THF–MeOH–H2O gave the monomeric
seco acid 2 of clavosolide A 1. The spectroscopic data
of 2 were in agreement with the assigned structure.16

In conclusion, the synthesis of the monomeric unit of
clavosolide A, starting from DD-glucose, was accom-
plished. We believe that the synthetic strategy described
herein, is flexible to accommodate minor modifications,
which could subsequently lead to the synthesis of the
monomeric unit of 1 with revised stereochemistry.
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